Dealing with Gene-Dosage Imbalance during S Phase.
نویسندگان
چکیده
DNA replication perturbs the dosage balance between genes that replicate early during S phase and those that replicate late. If propagated to influence protein content, this dosage imbalance could influence cellular functions. In bacteria, mechanisms have evolved to use this imbalance to tune certain processes with the rate of cell growth. By contrast, eukaryotes buffer this dosage imbalance to ensure gene expression homeostasis also during S phase. Here, we outline classical and more recent studies describing how different organisms deal with this replication-dependent dosage imbalance, and describe recent results linking the eukaryotic buffering mechanism to replication-dependent histone acetylation. Finally, we discuss the possible implications of this buffering mechanism and speculate why it is specific to eukaryote cells.
منابع مشابه
A role for Rtt109 in buffering gene-dosage imbalance during DNA replication.
Chromatin can function as an integrator of DNA-related processes, allowing communication, for example, between DNA replication and gene transcription. Such communication is needed to overcome the gene-dosage imbalance introduced during DNA replication, when certain genes are replicated prior to others. Increased transcription of early replicating genes could alter regulatory balances. This does...
متن کاملGenome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives (AC, AAC, CCA, CCAA)
Gene/genome dosage balance is an essential evolutionary mechanism for organisms to ensure a normal function, but the underlying causes of dosage-imbalance regulation remain poorly understood. Herein, the serial Brassica hybrids/polyploids (AC, AAC, CCA, CCAA) with different copies of A and C subgenomes from the same two parents of Brassica rapa and Brassica oleracea were synthesized to investig...
متن کاملThe Mutation of the rpoS Gene, the Central Regulator of Stationary Phase, Affects the Cell Division in Flexibacter chinensis
A one kb portion of the rpoS gene from Flexibacter chinensis was isolated by PCR, sequenced and compared to the rpoS gene of a variety of other organisms. The gene was found to be 98% similar to previously sequenced genes. Mutation of the rpoS gene with tri-parental mating produced strain JR101 and the growth rate of the mutant was compared with that of the wild-type. The mutant grew slower, an...
متن کاملHuman capacitance to dosage imbalance: coping with inefficient selection.
Proteins rely on associations to improve packing quality and thus maintain structural integrity. This makes packing deficiency a likely determinant of dosage sensitivity, that is, of the fitness impact of concentration imbalances relative to the stoichiometry of the protein complexes. This hypothesis was validated by examining evolution-related dosage imbalances: Duplicates of genes encoding fo...
متن کاملAbnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner
The relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in genetics : TIG
دوره 32 11 شماره
صفحات -
تاریخ انتشار 2016